Monday, 6 August 2018

Create a Time-Series data from CSV

If your data contains Date column and you want to convert the date column as index and in datetime format, use the below codes:

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
from matplotlib.pylab import rcParams
from IPython.display import display
rcParams['figure.figsize'] = 15, 6

dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m-%d')

data = pd.read_csv('I1974A_LCT_DAL_WTR_HST_1792_2016_2018_modified.txt', sep = '|', names = ['CRN_YR_CMA_LCT_CD','LCT_NBR','CAL_DT','MAX_TPU_NBR','NRM_MAX_TPU_NBR','MIN_TPU_NBR','NRM_MIN_TPU_NBR','PIT_QTY','NRM_PIT_QTY','SNO_QTY','NRM_SNO_QTY','WTR_DES_TXT'], parse_dates=['CAL_DT'], index_col='CAL_DT',date_parser=dateparse)
display(data.head())
display(data.dtypes)

selecteddf = data['MAX_TPU_NBR']
display(selecteddf.head())

plt.plot(selecteddf)

No comments:

Post a Comment