Monday, 26 October 2015

HCatalog Basics


  • HCatalog is an extension of Hive, that exposes the Hive metadata to other tools and frameworks.
  • To define a HCatalog schema, one simply needs to define a table in Hive.
  • The usefulness of HCatalog is, when one needs to expose the schema outside of Hive i.e to other frameworks - ex : Pig
  • To load a table student, managed by HCatalog:
    • stu_table= LOAD 'student' USING org.apache.hcatalog.pig.HCatLoader();
      • the schema of stu_table is whatever the schema of student is.
  • Similarly, to store we use :
    • STORE stu_table INTO 'student' USING org.apache.hcatalog.pig.HCatStorer();


  • Using PIG shell, we can run Hive DDL command.
  • grunt> sql create table movies (
  •    title string,
  •    rating string,
  •    length double)
  • partitioned by (genre string)
  • stored as ORC;

Thursday, 22 October 2015

Twitter Kafka Integration Using Hortonworks

KAFKA-TWITTER IN HORTONWORKS

- Make sure kafka and zookeeper are running from yourhostname.cloudapp.net:8080
- Check if port for zookeeper is 2181 and kafka : 6667

- Create a Topic :

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --zookeeper yourhostname.cloudapp.net:2181 --replication-factor 1 --partitions 1 --topic twitter-topic

- Verify if topic is created

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --list --zookeeper yourhostname.cloudapp.net:2181

- Create a java mavaen project :

package SampleTwitterKafka;

import java.util.Properties;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

import com.google.common.collect.Lists;
import com.twitter.hbc.ClientBuilder;
import com.twitter.hbc.core.Client;
import com.twitter.hbc.core.Constants;
import com.twitter.hbc.core.endpoint.StatusesFilterEndpoint;
import com.twitter.hbc.core.processor.StringDelimitedProcessor;
import com.twitter.hbc.httpclient.auth.Authentication;
import com.twitter.hbc.httpclient.auth.OAuth1;

public class TwitterKafkaProducer {

private static final String topic = "twitter-topic";

public static void run(String consumerKey, String consumerSecret,
String token, String secret) throws InterruptedException {

Properties properties = new Properties();
properties.put("metadata.broker.list", "yourhostname.cloudapp.net:6667");
properties.put("serializer.class", "kafka.serializer.StringEncoder");
properties.put("client.id","camus");
ProducerConfig producerConfig = new ProducerConfig(properties);
kafka.javaapi.producer.Producer<String, String> producer = new kafka.javaapi.producer.Producer<String, String>(
producerConfig);

BlockingQueue<String> queue = new LinkedBlockingQueue<String>(10000);
StatusesFilterEndpoint endpoint = new StatusesFilterEndpoint();
// add some track terms
endpoint.trackTerms(Lists.newArrayList("#ALDUB14thWeeksary",
"#MagpasikatAnneKimEruption", "#happydussehra", "ItsShowtime DARREN"));

Authentication auth = new OAuth1(consumerKey, consumerSecret, token,
secret);
// Authentication auth = new BasicAuth(username, password);

// Create a new BasicClient. By default gzip is enabled.
Client client = new ClientBuilder().hosts(Constants.STREAM_HOST)
.endpoint(endpoint).authentication(auth)
.processor(new StringDelimitedProcessor(queue)).build();

// Establish a connection
client.connect();

// Do whatever needs to be done with messages
for (int msgRead = 0; msgRead < 1000; msgRead++) {
KeyedMessage<String, String> message = null;
try {
message = new KeyedMessage<String, String>(topic, queue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
producer.send(message);
}
producer.close();
client.stop();

}

public static void main(String[] args) {
try {
TwitterKafkaProducer.run("XXXXXXXXXXXXXX", "XXXXXXXXXXXXXX", "XXXXXXXXXXXXXX", "XXXXXXXXXXXXXX");
} catch (InterruptedException e) {
System.out.println(e);
}
}
}


***********************************************************************************

POM File :

<dependencies>
<dependency>
<groupId>com.twitter</groupId>
<artifactId>hbc-core</artifactId> <!-- or hbc-twitter4j -->
<version>2.2.0</version> <!-- or whatever the latest version is -->
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.8.0</artifactId>
<version>0.8.1.1</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.16</version>
<exclusions>
<exclusion>
<groupId>javax.jms</groupId>
<artifactId>jms</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.6.4</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>

</dependencies>

***********************************************************


- Change the fields, highlighted in yellow, in the java code, and create a  runnable jar along with entry to class name

- Copy the jar to the linux machine :  yourhostname.cloudapp.net

- Run jar in linux terminal:
   java -jar twitter-snapshotv1.jar

- Check for producer in a new Terminal :
   /usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --zookeeper yourhostname.cloudapp.net:2181 --topic twitter-topic --from-beginning


BINGO !!!

Wednesday, 7 October 2015

GUI Tool for Hive

One of the best tool for connecting to Hive:

http://www.aquafold.com/dbspecific/apache_hive_client.html


The setup is strightforward :

Points:

1. Get the public IP of your machine where HIVE is installed.

2. Check UserName and Password for hive. You can find this in Ambari portal if using hortonworks.

3. Give a Database name. (Use default, if no Database is created)

4. Test the connection.

5. Done !




Setup 4 Node Hadoop Cluster using Azure Subscription

So, if you have Azure Subscription, and planning to setup Hadoop Cluster, then I would strongly recommend, go through the link mentioned below:

http://blogs.technet.com/b/oliviaklose/archive/2014/06/17/hadoop-on-linux-on-azure-1.aspx


This is one of the best blog I have come across, and you can setup-up your 4 node cluster in less than 4 hours !